High-Voltage Direct-Current Transmission Systems
— From theory to practice and back

Daniele Zonettia, Romeo Ortegaa, Abdelkrim Benchaibb

aLaboratoire de Signaux et Systèmes - Centrale Supélec
bAlstom Grid

Journées de l’Automatique GDR MACS 2015
Grenoble, 5-6 October 2015
Outline

1. Introduction: system topology & control architecture
2. Energy–based modeling
3. Power flow analysis
4. PI controllers:
 - Design: a GAS PI passivity–based controller
 - Analysis: stability and performance limitations
5. Overcoming performance limitations
6. Conclusions & future research
Outline

1. Introduction: system topology & control architecture
2. Energy–based modeling
3. Power flow analysis
4. PI controllers:
 - Design: a GAS PI passivity–based controller
 - Analysis: stability and performance limitations
5. Overcoming performance limitations
6. Conclusions & future research
Multiterminal HVDC Transmission Systems

Multiterminal HVDC transmission system

Definition. Direct Current (DC) electrical system operating at high voltage (HV), with no loads. It is constituted by *n* terminals that are connected via *ℓ* DC transmission lines.

- AC sources connected to the terminals are associated to MVAC grids or Renewable Energy Sources (RES)
- and interfaced through power converters, that:
 - perform the AC/DC conversion
 - regulate the power flow and/or the voltages
Multiterminal HVDC Transmission Systems

Multiterminal HVDC transmission system

Definition. Direct Current (DC) electrical system operating at high voltage (HV), with no loads. It is constituted by \(n \) terminals that are connected via \(\ell \) DC transmission lines.

- AC sources connected to the terminals are associated to MVAC grids or Renewable Energy Sources (RES)
- and interfaced through power converters, that:
 - perform the AC/DC conversion
 - regulate the power flow and/or the voltages
Background and motivation

Popularity of HVDC transmission is due to the following features

- interconnection of non–synchronous AC grids (B2B connection)
- transmission over long distances (reduced losses)
 - island systems connection
 - integration of *remotely located* RES

but introduces new control problems...

- intermittent nature of RES
- power converters are *highly nonlinear* elements
- no time–scale separation between transmission and generation
Background and motivation

Popularity of HVDC transmission is due to the following features

- interconnection of non–synchronous AC grids (B2B connection)
- transmission over long distances (reduced losses)
 - island systems connection
 - integration of remotely located RES

but introduces new control problems...

- intermittent nature of RES
- power converters are highly nonlinear elements
- no time–scale separation between transmission and generation
Control architecture: nominal conditions

...and still employs the control structure of traditional AC systems

- Refs calculator: takes as inputs the desired behavior and the power flow and derive the setpoints
- Feasible setpoints (nominal conditions) are stabilized by the inner control, under perfect knowledge of the power flow
Control architecture: perturbed conditions

...and still employs the control structure of traditional AC systems

Power flow uncertainty or contingencies (perturbed conditions) ⇒ not feasible setpoints. Primary control adapts refs to

- be feasible and so stabilizable by the inner control
- preserve suitable properties (power sharing, voltage stability)
Outline

1. Introduction: system topology & control architecture
2. Energy–based modeling
3. Power flow analysis
4. PI controllers:
 ▶ Design: a GAS PI passivity–based controller
 ▶ Analysis: stability and performance limitations
5. Overcoming performance limitations
6. Conclusions & future research
Energy–based modeling

Power system as interconnection of single components

- Power converters \((C) \), that are nonlinear elements
- DC transmission lines \((L) \), as linear \(\pi \)-models
- Interconnection laws described by standard KVL, KCL

Assumptions

A1. Balanced operation of the line voltages
A2. Ideal four–quadrant operation of the converter
A3. Switches can be operated sufficiently fast
 \(\Rightarrow \) Average model of the converter
A4. Synchronized operation of the converters
 \(\Rightarrow \) AC source \(\equiv \) constant amplitude/frequency voltage source
 \(\Rightarrow \) \(dq \)-frame representation \(\equiv \) constant steady–states
Energy–based modeling

Power system as interconnection of single components

- Power converters (C), that are nonlinear elements
- DC transmission lines (L), as linear π-models
- Interconnection laws described by standard KVL, KCL

Assumptions

A1. Balanced operation of the line voltages
A2. Ideal four–quadrant operation of the converter
A3. Switches can be operated sufficiently fast
 \(\Rightarrow \) Average model of the converter
A4. Synchronized operation of the converters
 \(\Rightarrow \) AC source \(\equiv \) constant amplitude/frequency voltage source
 \(\Rightarrow \) dq–frame representation \(\equiv \) constant steady–states
Energy-based modeling

Components modeled as port–Hamiltonian (pH) systems

\[
\dot{x} = (\mathcal{J}(x) - \mathcal{R}(x))\nabla_x \mathcal{H}(x) + G(x)u + E
\]

\[
y = G^\top(x) \nabla_x \mathcal{H}(x),
\]

with: \(x\) the state in physical variables (fluxes, charges), \(\mathcal{J} = -\mathcal{J}^\top(x)\), \(\mathcal{R}(x) \geq 0\), \(\mathcal{H}(x)\) the interconnection, damping and energy functions.

Interconnection laws captured by a graph \(\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{M})\)

For a graph \(\mathcal{G}\) with set of vertices \(\mathcal{V}\), edges \(\mathcal{E}\) and incidence matrix \(\mathcal{M}\), KCL and KVL are given respectively by

\[
\mathcal{M} I_\mathcal{E} = 0, \quad \mathcal{M}^\top V_\mathcal{V} = V_\mathcal{E},
\]

with \(I_\mathcal{E}, V_\mathcal{E}\) current and voltages of the edges and \(V_\mathcal{V}\) voltages at the vertices (nodes).
Energy-based modeling

Components modeled as port-Hamiltonian (pH) systems

\[
\begin{align*}
 \dot{x} &= (\mathcal{J}(x) - \mathcal{R}(x))\nabla_x \mathcal{H}(x) + G(x)u + E \\
 y &= G^\top(x)\nabla_x \mathcal{H}(x),
\end{align*}
\]

with: \(x\) the state in physical variables (fluxes, charges), \(\mathcal{J} = -\mathcal{J}^\top(x)\), \(\mathcal{R}(x) \geq 0\), \(\mathcal{H}(x)\) the interconnection, damping and energy functions.

Interconnection laws captured by a graph \(\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{M})\)

For a graph \(\mathcal{G}\) with set of vertices \(\mathcal{V}\), edges \(\mathcal{E}\) and incidence matrix \(\mathcal{M}\), KCL and KVL are given respectively by

\[
\begin{align*}
 \mathcal{M}I_\mathcal{E} &= 0, \\
 \mathcal{M}^\top V_\mathcal{V} &= V_\mathcal{E},
\end{align*}
\]

with \(I_\mathcal{E}\), \(V_\mathcal{E}\) current and voltages of the edges and \(V_\mathcal{V}\) voltages at the vertices (nodes).
Energy-based modeling

\[n = 3 \text{ CONVERTERS: } x_C \in \mathbb{R}^{3n}, u \in \mathbb{R}^{2n} \]

\[\dot{x}_C = (J_C - R_C) \nabla H_C + g_C(x_C)u + E_C - G_C i_C \]

\[v_C = G_C^\top \nabla H_C, \]

with \(H_C := \frac{1}{2} x_C^\top Q_C x_C \).

\[\ell = 2 \text{ LINES: } x_L \in \mathbb{R}^\ell \]

\[\dot{x}_L = -R_L \nabla H_L + v_L \]

\[i_L = \nabla H_L, \]

with \(H_L := \frac{1}{2} x_L^\top Q_L x_L \).
Energy-based modeling

\(n = 3 \) CONVERTERS: \(x_C \in \mathbb{R}^{3n}, u \in \mathbb{R}^{2n} \)

\[
\dot{x}_C = (J_C - R_C) \nabla H_C + g_C(x_C) u \\
+ E_C - G_C i_C \\
v_C = G_C^\top \nabla H_C,
\]

with \(H_C := \frac{1}{2} x_C^\top Q_C x_C \).

\(\ell = 2 \) LINES: \(x_L \in \mathbb{R}^\ell \)

\[
\dot{x}_L = -R_L \nabla H_L + v_L \\
i_L = \nabla H_L,
\]

with \(H_L := \frac{1}{2} x_L^\top Q_L x_L \).

INTERCONNECTION LAWS

\[
M = \begin{bmatrix}
I_n^T & M \\
-1_n^T & 0_{\ell}^T
\end{bmatrix}
\]

(KCL) \(i_C + M i_L = 0_n, \quad -1_n^T i_C = 0 \)

(KVL) \(v = v_C, \quad M^\top v = v_L \)
A multiterminal HVDC transmission system can be modeled as

\[
\dot{x} = \begin{bmatrix} \dot{x}_C \\ \dot{x}_L \end{bmatrix} = \left[\begin{array}{ccc} (J_R - R_C) & -G_C M \\ M^T G_C & -R_L \end{array} \right] (J - R) \nabla H + \begin{bmatrix} g_C(x_C) \\ 0 \end{bmatrix} u + \begin{bmatrix} E_C \\ E \end{bmatrix}
\]

(1)

- quadratic energy function \(H := \frac{1}{2} x^T Q x \), \(Q = \text{blockdiag}\{Q_C, Q_L\} \)
- structured (linear) input matrix \(g(x) := [J_d Q x \quad J_q Q x] \)
- topology matrix \(M \) issued by the graph \(G \)

why \(dq \)-frame?

- Constant steady-states \(\Rightarrow \) pure regulation problem
- Control active/reactive power \(\Rightarrow \) control of \(dq \) currents
Energy-based modeling

Port–Hamiltonian modeling

A multiterminal HVDC transmission system can be modeled as

\[
\dot{x} = \begin{bmatrix} \dot{x}_C \\ \dot{x}_L \end{bmatrix} = \begin{bmatrix} (J_R - R_C) & -G_CM \\ M^T G_C^T & -R_L \end{bmatrix} \nabla H + \begin{bmatrix} g_C(x_C) \\ 0 \end{bmatrix} u + \begin{bmatrix} E_C \\ 0 \end{bmatrix}
\]

\[\text{(1)}\]

- quadratic energy function \(H := \frac{1}{2} x^T Q x, \ Q = \text{blockdiag}\{Q_C, Q_L\} \)
- structured (linear) input matrix \(g(x) := [J_d Q x \quad J_q Q x] \)
- topology matrix \(M \) issued by the graph \(G \)

why \(dq \)-frame?

- Constant steady-states \(\Rightarrow \) pure regulation problem
- Control active/reactive power \(\Rightarrow \) control of \(dq \) currents
Outline

1. Introduction: system topology & control architecture
2. Energy–based modeling
3. Power flow analysis
4. PI controllers:
 - Design: a GAS PI passivity–based controller
 - Analysis: stability and performance limitations
5. Overcoming performance limitations
6. Conclusions & future research
Passivity as a tool for power flow analysis

Admissible equilibria

Proposition 1. The admissible equilibria of (1) are the solution of

\[0 = \mathcal{H} \mathcal{C},i(x^*_C,i, x^*_L) \]

\[x^*_L = C x^*_C. \]

with \(C := (\mathcal{R}_L \mathcal{Q}_L)^{-1} M^\top G_C^\top Q_C, \quad i \in [1, n]. \)

why is this interesting?

- Lines equilibria linearly depend on converters equilibria
- Eqs.(2) are the power flow steady–states equations (PFSSE)
- Defines all steady states achievable by ANY stabilizing controller
Admissible equilibria

Proposition 1. The admissible equilibria of (1) are the solution of

\[0 = \dot{H}_{C,i}(x^*_C,i, x^*_L) \]

\[x^*_L = C x^*_C. \]

with \(C := (R_L Q_L)^{-1} M^\top G_C^\top Q_C, \ i \in [1, n]. \)

why is this interesting?

- Lines equilibria linearly depend on converters equilibria
- Eqs.(2) are the power flow steady–states equations (PFSSE)
- Defines all steady states achievable by **ANY** stabilizing controller
Passivity as a tool for power flow analysis

PFSSE can be used to formulate the problem of refs calculation
1. Introduction: system topology & control architecture
2. Energy–based modeling
3. Power flow analysis
4. PI controllers:
 - Design: a GAS PI passivity–based controller
 - Analysis: stability and performance limitations
5. Overcoming performance limitations
6. Conclusions & future research
Passivity as a tool for inner-loop control design

Control design:
- define the incremental forms
- find a passive output for the incremental model
- design the controller over the passive output

Incremental formulation
Let x^* an admissible equilibrium point and u^* the equilibrium control, i.e.

$$(x^*, u^*) : (J - R)Qx^* + g(x^*)u^* + E = 0.$$

We define then

$$\tilde{x} := x - x^*, \quad \tilde{u} := u - u^*, \quad \tilde{H}(x) := \frac{1}{2}\tilde{x}^\top Q\tilde{x},$$

i.e. the errors and the correspondent (incremental) energy function.
Passivity as a tool for inner-loop control design

Control design:
▶ define the incremental forms
▶ find a passive output for the incremental model
▶ design the controller over the passive output

Incremental formulation
Let x^* an admissible equilibrium point and u^* the equilibrium control, i.e.
\[(x^*, u^*) : (\mathcal{J} - \mathcal{R})Qx^* + g(x^*)u^* + E = 0.\]
We define then
\[\tilde{x} := x - x^*, \quad \tilde{u} := u - u^*, \quad \tilde{H}(x) := \frac{1}{2}\tilde{x}^\top Q\tilde{x},\]
i.e. the errors and the correspondent (incremental) energy function.
A passive output for the incremental model

Proposition 2. Consider the incremental model of (1). The mapping $\tilde{u} \rightarrow y$ is passive with storage function $\tilde{H}(x)$, with

$$y := g^T(x^*)Qx.$$

why is important to find a passive output?

- the feedback interconnection of two passive systems is passive
- the system can be controlled with PIs
A passive output for the incremental model

Proposition 2. Consider the incremental model of (1). The mapping $\tilde{u} \to y$ is passive with storage function $\tilde{H}(x)$, with

$$y := g^\top(x^*)Qx.$$

why is important to find a passive output?

- the feedback interconnection of two passive systems is passive
- the system can be controlled with PIs
Proposition 3. Let an assignable reference x^*, verifying the PFSSE. Then the PI controller

$$\dot{z} = -y, \quad u = -K_py + K_iz,$$

globally asymptotically regulates the system (1) to (x^*_C, Cx^*_C) for any positive gains K_I, K_P.

- **PI control**: simple, easily implementable, intrinsically robust
- Blockdiag matrices for the gains guarantee decentralization
Passivity as a tool for inner–loop control design

Proposition 3
Let an assignable reference x^\star, verifying the PFSSE. Then the PI controller

$$\dot{z} = -y, \quad u = -K_P y + K_I z,$$

globally asymptotically regulates the system (1) to (x^\star_C, Cx^\star_C) for any positive gains K_I, K_P.

- **PI control**: simple, easily implementable, intrinsically robust
- **Blockdiag matrices** for the gains guarantee **decentralization**
Outline

1. Introduction: system topology & control architecture
2. Energy–based modeling
3. Power flow analysis
4. PI controllers:
 - Design: a GAS PI passivity–based controller
 - Analysis: stability and performance limitations
5. Overcoming performance limitations
6. Conclusions & future research
Other controllers reported in literature

Power converter states: dq–currents (i_d, i_q), DC voltage v_C

1. **PI passivity–based controller** based on the output

 $$ y_d := v_C^* i_d - i_d^* v_C \quad y_q := v_C^* i_q - i_q^* v_C $$

2. **PI dq-currents controller** based on the output

 $$ y_d^I := i_d - i_d^* \quad y_q^I := i_q - i_q^* $$

3. **PI voltage controller** based on the output

 $$ y_d^V := v_C - v_C^* \quad y_q^V := i_q - i_q^* $$
Simulations: a three–terminal benchmark

CONTROL OBJECTIVES

- All terminals are required to keep reactive power near to zero
- Terminals \textit{WF1}, \textit{WF2} regulate the injected (absorbed) active power
- The remaining terminal regulates the DC voltage (slack bus, \textit{SB})
Simulations: a three–terminal benchmark

CONTROL OBJECTIVES

- All terminals are required to keep reactive power near to zero
- Terminals $WF1$, $WF2$ regulate the injected (absorbed) active power
- The remaining terminal regulates the DC voltage (slack bus, SB)
Simulations: a three-terminal benchmark

SIMULATED SCENARIO: From 0 to 5T s, with changes every T s

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>WF_1</th>
<th>WF_2</th>
<th>SB</th>
<th>WF_1</th>
<th>WF_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1260</td>
<td>900</td>
<td>1000</td>
<td>100</td>
<td>142.595</td>
<td>158.951</td>
</tr>
<tr>
<td>T</td>
<td>-1588</td>
<td>900</td>
<td>1800</td>
<td>100</td>
<td>153.650</td>
<td>179.691</td>
</tr>
<tr>
<td>2T</td>
<td>-266</td>
<td>500</td>
<td>-200</td>
<td>100</td>
<td>109.004</td>
<td>104.004</td>
</tr>
<tr>
<td>3T</td>
<td>905</td>
<td>-400</td>
<td>-200</td>
<td>100</td>
<td>69.419</td>
<td>60.877</td>
</tr>
<tr>
<td>4T</td>
<td>-849</td>
<td>1300</td>
<td>-200</td>
<td>100</td>
<td>128.708</td>
<td>124.532</td>
</tr>
</tbody>
</table>

highly stressed scenario — many power reversals
Simulations: standard PI controllers

Setpoint changes every $T = 4$ s.

Good performances but instability arises under full power flow reversal
Proposition 4. The zero dynamics of the single converter with respect to the output y^I and output y^V are given by the scalar system

$$\dot{\zeta} = -\beta \zeta + \frac{\alpha}{\zeta} - \gamma, \quad \beta, \gamma > 0.$$

- the system admits two equilibria, but only one is physically meaningful
- If $\alpha > 0$, i.e. the converter is injecting power the equilibrium is stable
- If $\alpha < 0$, i.e. the converter is absorbing power the equilibrium is unstable

\Rightarrow zero dynamics become unstable when the power flow is reversed
Simulations: passivity–based controllers

Setpoint changes every $T = 200$ s.

Stable for any scenario (as expected) but unacceptably slow transients
Performance limitations analysis: passivity–based controllers

Zero dynamics analysis – Passive output y

Proposition 5. The zero dynamics of the single converter wrt to the output y is *linear* and *exponentially stable* and converge at a rate

$$\lambda := \frac{1}{2} \frac{P^* - P_{dc}^*}{\mathcal{H}(x_C^*)}.$$

- $\lambda \approx 0.04$ for HV power converters
- analogous to have a slow zero in linear systems
- increasing the gains, one pole of the closed-loop system is attracted by the slow zero
Proposition 5. The zero dynamics of the single converter wrt to the output y is *linear* and *exponentially stable* and converge at a rate

$$\lambda := \frac{1}{2} \frac{P^* - P^*_{dc}}{\mathcal{H}(x^*_C)}.$$

- $\lambda \approx 0.04$ for HV power converters
- analogous to have a slow zero in linear systems
- increasing the gains, one pole of the closed-loop system is attracted by the slow zero
Outline

1. Introduction: system topology & control architecture
2. Energy–based modeling
3. Power flow analysis
4. PI controllers:
 - Design: a GAS PI passivity–based controller
 - Analysis: stability and performance limitations
5. Overcoming performance limitations
6. Conclusions & future research
Proposition 6. Let an assignable reference x^*, verifying the PFSSE. Then the controller

$$
\dot{z} = -y, \quad u = -K_P y + K_I z - K_L Q(x - x^*),
$$

globally asymptotically regulates the system (1) to (x^*_C, Cx^*_C) for any positive gains K_I, K_P, K_L verifying

$$
\mathcal{R} + g(x^*)K_P g^T(x^*) + \frac{1}{2} \left[g(x^*)K_L + K_L^T g^T(x^*) \right] > 0.
$$

- the additional feedback affects only the P-part of the controller
- d.o.f. added to render the Lyapunov derivative negative definite
- the condition can be intended as a constraint for tuning of the gains
Adding a linear feedback to the passivity–based inner loop

Decentralized PI Regulation plus linear feedback

Proposition 6. Let an assignable reference x^*, verifying the PFSSE. Then the controller

$$
\dot{z} = -y, \quad u = -K_P y + K_I z - K_L Q(x - x^*),
$$

globally asymptotically regulates the system (1) to (x^*_C, Cx^*_C) for any positive gains K_I, K_P, K_L verifying

$$
\mathcal{R} + g(x^*)K_P g^\top(x^*) + \frac{1}{2} \left[g(x^*)K_L + K_L^\top g^\top(x^*) \right] > 0.
$$

- the additional feedback affects only the P–part of the controller
- d.o.f. added to render the Lyapunov derivative negative definite
- the condition can be intended as a constraint for tuning of the gains
Adding a linear feedback to the passivity–based inner loop

Inspired by the ubiquitous voltage droop control, we choose K_L such that

\[
\begin{bmatrix}
u_d \\
u_q
\end{bmatrix} = \begin{bmatrix}-k_{Pd}v_d + k_{Id}z_d - k_D(v_C - v_C^*) \\
-k_{Pq}v_q + k_{Iq}z_q.
\end{bmatrix},
\begin{bmatrix}
\dot{z}_d \\
\dot{z}_q
\end{bmatrix} = \begin{bmatrix}-y_d \\
-y_q
\end{bmatrix},
\]

i.e. we introduced an additional linear feedback in the voltage error

$\Rightarrow \exists$ gains k_P, k_I, k_L that ensure

- GAS of the equilibrium point
- decentralization of the controller
- to speed up convergence to ms
- drawback: in contrast with conventional droop, stability is lost in perturbed conditions
Adding a linear feedback to the passivity–based inner loop

Inspired by the ubiquitous voltage droop control, we choose K_L such that

$$
\begin{bmatrix}
u_d \\ u_q
\end{bmatrix} =
\begin{bmatrix}
-k_{Pd}y_d + k_{Id}z_d - k_D(v_C - v_C^*) \\ -k_{Pq}y_q + k_{Iq}z_q
\end{bmatrix},
\begin{bmatrix}
\dot{z}_d \\ \dot{z}_q
\end{bmatrix} =
\begin{bmatrix}
-y_d \\ -y_q
\end{bmatrix},
$$

i.e. we introduced an additional linear feedback in the voltage error

$\Rightarrow \exists$ gains k_P, k_I, k_L that ensure

- GAS of the equilibrium point
- decentralization of the controller
- to speed up convergence to ms
- drawback: in contrast with conventional droop, stability is lost in perturbed conditions
Simulations: passivity–based control plus linear feedback

Setpoint changes every $T = 2 \text{ s}$.

Stable for any scenario with good performances
1. Introduction: system topology & control architecture
2. Energy–based modeling
3. Power flow analysis
4. PI controllers:
 ▶ Design: a GAS PI passivity–based controller
 ▶ Analysis: stability and performance limitations
5. Overcoming performance limitations
6. Conclusions & future research
Conclusions

- unified framework for modeling using a pH representation
- power flow analysis (assignable behavior)
- PI passivity–based control (PI–PBC) design
- performance and stability analysis of standard PI controllers
- modified PI–PBC to improve performances

[Zonetti, D., Ortega, R., Benchaib, A. Modeling and control of HVDC transmission systems – From theory to practice and back. Control Engineering Practice (2015)]
Future research

▶ extend to lines modeled by PDEs
▶ include AC dynamics to explore AC/DC interactions
▶ design a new GAS primary controller
 ▶ behind the PI–PBC: adaptive control?
 ▶ as a whole with the inner loop
 ⇒ stabilization to an unknown operating point
▶ extend the theory to DC distribution networks interfaced to AC grids ⇒ including loads

in partnership with FREEDM Center at North Carolina State University —
http://www.freedm.ncsu.edu/
Merci.