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Implementatiblity of Timed Controllers

The semantics of timed automata is a mathematical
idealization:

Infinitely punctual : Exact synchronization is required when
composing several TAs;

Infinitely precise : Different clocks are assumed to increase at
the same rate in both the controler and the
system.

Infinitely fast : It may happen, for instance, that a TA will
have to perform actions at time n and n + 1/n,
for all n;

In practice, a processor is digital and imprecise. Even if we
prove that a TA will not enter a set of bad states, its
implementations could still lead to bad behaviors.
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Implementatiblity of Timed Controllers

Examples (Zeno behaviors)

`0

y≤1

`1

x :=0

The red state can be avoided;

But this would require to prevent time to elapse.
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Implementatiblity of Timed Controllers

Examples (Fischer’s Mutual Exclusion Protocol)

s1 r1

x1≤2

w1c1

id=0

x1:=0

x1:=0

id:=1

id=0

x1:=0

id=1, x1>2

id:=0

s2 r2

x2≤2

w2c2

id=0

x2:=0

x2:=0

id:=2

id=0

x2:=0

id=2, x2>2

id:=0

It can be proved that this protocol enforces mutual exclusion
in the critical (red) state.

Any imprecise implementation will fail to fulfil that property.



Outline of the talk

1 Introduction

2 Modeling the execution platform [Altisen & Tripakis, 2005]

3 A semantical approach [De Wulf et al., 2004]

4 Conclusions



Outline of the talk

1 Introduction

2 Modeling the execution platform [Altisen & Tripakis, 2005]

3 A semantical approach [De Wulf et al., 2004]

4 Conclusions



Modeling the execution platform [Altisen & Tripakis, 2005]

A

x>2,y :=0

Env

x = 2.4

y = 0.6

id = 1

The automaton A is now a discrete automaton, using input
variables given by the platform;

The automaton P is a timed automaton that triggers A
(modeling a digital CPU), and sends input variables to A
depending on the values of the variables in Env;
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x = 2.4

y = 0.6

id = 1
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The automaton A is now a discrete automaton, using input
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Modeling the execution platform [Altisen & Tripakis, 2005]

variables,
environment

clocks of
the model

internal
clock

platform P

(“digitized”) model Prog(A)

trig!



Modeling the execution platform [Altisen & Tripakis, 2005]

1. Transforming A into Prog(A).

trig! is an input event allowing A to perform one step;

the value of a clock is the difference between the current
value of the internal clock (now) and the date at which the
clock was last reset:

“x > 2′′ becomes “now− x > 2′′

“x := 0′′ becomes “x := now′′



Modeling the execution platform [Altisen & Tripakis, 2005]

1. Transforming A into Prog(A).

Example (Fischer’s Mutual Exclusion Protocol)

s1 r1

w1c1

trig? trig?

trig?trig?

trig?, x1:=now, id:=0

trig?

now−x1≤2

x1:=now

id:=1

trig?

id=0

x1:=now

trig?, id=1, now−x1>2

trig?

id:=0
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1. Transforming A into Prog(A).

2. Modeling the digital CPU.

Examples

x≤∆

x=∆, x :=0

trig!

x≤∆2

x∈[∆1,∆2], x :=0

trig!
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1. Transforming A into Prog(A).

2. Modeling the digital CPU.

3. Modeling the global clock.

Examples
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Modeling the execution platform [Altisen & Tripakis, 2005]

1. Transforming A into Prog(A).

2. Modeling the digital CPU.

3. Modeling the global clock.

4. Modeling the input/output variables.

delays for reading variables...

lock mechanism for writing variables...



Modeling the execution platform [Altisen & Tripakis, 2005]

1. Transforming A into Prog(A).

2. Modeling the digital CPU.

3. Modeling the global clock.

4. Modeling the input/output variables.

5. Classical verification techniques on the product of those
automata.



Pros and cons of this approach

Pros:

Very expressive: the platform can be described with many
details;
Relies on classical techniques: the verification step is applied
on standard timed automata. Existing tools can be used.



Pros and cons of this approach

Pros:

Very expressive: the platform can be described with many
details;
Relies on classical techniques: the verification step is applied
on standard timed automata. Existing tools can be used.

Cons:

Formal meaning?: if the model satisfies some property, what
does it really mean?
Faster is better?: we expect that a program proved to be
implementable on a given platform remains implementable on a
faster platform. This property fails to hold with this modeling.



Outline of the talk

1 Introduction

2 Modeling the execution platform [Altisen & Tripakis, 2005]

3 A semantical approach [De Wulf et al., 2004]

4 Conclusions



A semantical approach [De Wulf et al., 2004]

1. “Implementation” Semantics

We consider a simple model of a platform, that repeatedly
executes the following actions:

store the value of the global clock;

compute guards;

fire one of the enabled transitions.

We assume that

one such loop takes at most ∆P t.u. to execute;

the global clock is updated every ∆L t.u.

 We write JAKImpl
∆P ,∆L

for the set of executions of a timed
automaton A under this semantics.



A semantical approach [De Wulf et al., 2004]

1. “Implementation” Semantics

2. Enlarged Semantics
We define the enlarged semantics for timed automata, by enlarging
guards on transitions by a small tolerance ∆:

If JgK = [a; b], then JgKAASAP
∆ = [a−∆, b + ∆].

 We write JAKAASAP
∆ for the set of executions of a timed

automaton A under this semantics.
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1. “Implementation” Semantics

2. Enlarged Semantics
We define the enlarged semantics for timed automata, by enlarging
guards on transitions by a small tolerance ∆:

If JgK = [a; b], then JgKAASAP
∆ = [a−∆, b + ∆].

 We write JAKAASAP
∆ for the set of executions of a timed

automaton A under this semantics.

Theorem ([DDR04])

If ∆ > 3∆L + 4∆P , then JAKImpl
∆P ,∆L

⊆ JAKAASAP
∆ .



A semantical approach [De Wulf et al., 2004]

We focus on safety properties for the implementation semantics:
we want to ensure that an implementation will avoid bad states.

 Reach∆(A) is the set of reachable states under the AASAP
semantics.

∆1 ≤ ∆2 ⇒ Reach∆1(A) ⊆ Reach∆2(A)

 R(A) =
⋂

∆>0 Reach∆(A) is the set of reachable states under
the AASAP semantics for any ∆ > 0.
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We focus on safety properties for the implementation semantics:
we want to ensure that an implementation will avoid bad states.

 Reach∆(A) is the set of reachable states under the AASAP
semantics.

∆1 ≤ ∆2 ⇒ Reach∆1(A) ⊆ Reach∆2(A)

 R(A) =
⋂

∆>0 Reach∆(A) is the set of reachable states under
the AASAP semantics for any ∆ > 0.

Lemma

For any timed automata A and for any set of zones B,

R(A) ∩ B = ∅ iff ∃∆ > 0. Reach∆(A) ∩ B = ∅.



An example: Standard semantics

0
x

y

1

1

2

2

b ca Bad
x=1

y :=0

x≤2

x :=0

y :=0

y≥2

x=0

y=2



An example: Standard semantics

0
x

y

1

1

2

2

b ca Bad
x=1

y :=0

x≤2

x :=0

y :=0

y≥2

x=0

y=2



An example: Standard semantics

0
x

y

1

1

2

2

b ca Bad
x=1

y :=0

x≤2

x :=0

y :=0

y≥2

x=0

y=2



An example: Standard semantics

0
x

y

1

1

2

2

b ca Bad
x=1

y :=0

x≤2

x :=0

y :=0

y≥2

x=0

y=2



An example: Standard semantics

0
x

y

1

1

2

2

b ca Bad
x=1

y :=0

x≤2

x :=0

y :=0

y≥2

x=0

y=2



An example: Standard semantics

0
x

y

1

1

2

2

b ca Bad
x=1

y :=0

x≤2

x :=0

y :=0

y≥2

x=0

y=2



An example: Standard semantics

0
x

y

1

1

2

2

b ca Bad
x=1

y :=0

x≤2

x :=0

y :=0

y≥2

x=0

y=2



An example: Standard semantics

0
x

y

1

1

2

2

b ca Bad
x=1

y :=0

x≤2

x :=0

y :=0

y≥2

x=0

y=2



An example: Standard semantics

0
x

y

1

1

2

2

b ca Bad
x=1

y :=0

x≤2

x :=0

y :=0

y≥2

x=0

y=2
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Difference between JAK and R(A)
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An algorithm for computing R(A)

Input: A Timed Automaton A
Output: The set R(A)

1. build the region graph G of A;
2. compute SCC(G ) = the set of strongly connected

components of G;
3. J := [(q0)];
4. J := Reach(G , J);
5. while ∃ S ∈ SCC(G ). S 6⊆ J and S ∩ J 6= ∅,

J := J ∪ S;
J := Reach(G , J);

6. return(J);
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J ⊆ R∆(A)

Lemma

Let A be a TA with n clocks, ∆ ∈ Q>0, and δ = ∆/n. Let u be a
valuation s.t. there exists a trajectory π[0,T ] in JAK with
π(0) = π(T ) = u. Let v ∈ [u] ∩ B(u, δ). Then there exists a
trajectory from u to v in JAK∆.

Proof: We build the new trajectory by slightly modifying the delay
transitions in π. This crucially depends on the fact that all clocks
are reset along the cycle.

Corollary

Let A be a TA and p = p0p1 . . . pk be a cycle in the region graph
(i.e. pk = p0). For any ∆ > 0 and any x , y ∈ p0, there exists a
trajectory from x to y.
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J ⊇ R∆(A)

Lemma

Let A be a TA, δ ∈ R>0 and k ∈ N. There exists D ∈ Q>0 s.t. for
all ∆ ≤ D, any k-step trajectory π′ = (q′0, t

′
0)(q′1, t

′
1) . . . (q′k , t

′
k)

in JAK∆ can be approximated be a k-step trajectory
π = (q0, t0)(q1, t1) . . . (qk , tk) in JAK with ‖qi − q′i‖ ≤ δ for all i .

The proof involves parametric DBMs.

Corollary

Let A be a TA with n clocks and W regions, α < 1/(2n), and
∆ < α

22W ·(4n+2)
. Let x ∈ J and y s.t. there exists a trajectory from

x to y in JAK∆. Then d(J, y) < α.
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Can we relax the assumption on cycles?
Our algorithm does not work if we relax the “progress-cycle”
constraint. For instance:
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Extension with clock drifts

when d time unit elapse, each clock is incremented by some value
between d × (1− ε) and d × (1 + ε).
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Since our algorithm is the same as [Pur98]’s, we get the following:

Theorem

R∆(A) = Rε(A) = R∆,ε(A).



Pros and cons of this approach

Cons:

Not very expressive: the platform is very simple, thus not very
realistic. Also, we over-approximate the set of executions.
New techniques, and much work still needed in order to be
applicable;
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Cons:

Not very expressive: the platform is very simple, thus not very
realistic. Also, we over-approximate the set of executions.
New techniques, and much work still needed in order to be
applicable;

Pros:

Formal approach: we know what we are doing...
Reasonnable complexity: “only” PSPACE;
Faster is better: the enlarged semantics obviously satisfies this
property.



Recent related work

This approach has received much attention in the last 3 years:

extension to LTL properties [BMR06]:

Büchi automata techniques;

Repeated reachability.

Extension to timed properties:

Different techniques;

No restrictions on cycles.

adaptations towards symbolic (zone-based) algorithms
[DK06,SF07].
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Conclusions & Future Work

Implementability is an important problem: the semantics of
timed automata is too mathematical;

Two different approaches:

modeling the platform is a very expressive approach that
involves only classical techniques;
enlarging the semantics is a coarser solution, but has nice
theoretical properties.

Future work:

Developpment and implementation of symbolic (zone-based)
algorithms;
Direct synthesis of robust controllers.
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