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@ The semantics of timed automata is a mathematical
idealization:

Infinitely punctual : Exact synchronization is required when
composing several TAs;

Infinitely precise : Different clocks are assumed to increase at
the same rate in both the controler and the
system.

Infinitely fast : It may happen, for instance, that a TA will
have to perform actions at time n and n+ 1/n,
for all n;

@ In practice, a processor is digital and imprecise. Even if we
prove that a TA will not enter a set of bad states, its
implementations could still lead to bad behaviors.



Implementatiblity of Timed Controllers

Examples (Zeno behaviors)

y<1

@ The red state can be avoided;

@ But this would require to prevent time to elapse.
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Examples (Cassez et al., 2002)
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Examples (Fischer's Mutual Exclusion Protocol)

x1 <2 xp<2

C id=0 C id=0
x1:=0 ° x2:=0

id=0 x1:=0 . id=0

id:i=1 -

x2:=0
x1:=0 id:=2

id=1, x1>2 id=2, xp>2

@ It can be proved that this protocol enforces mutual exclusion
in the critical (red) state.

@ Any imprecise implementation will fail to fulfil that property.
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Modeling the execution platform [Altisen & Tripakis, 2005]
A Platform Env

x>2,y:=0 P ~—— . x=24
y=20.6
id=1

@ The automaton A is now a discrete automaton, using input
variables given by the platform;

@ The automaton P is a timed automaton that triggers A
(modeling a digital CPU), and sends input variables to .4
depending on the values of the variables in Env;



Modeling the execution platform [Altisen & Tripakis, 2005]

(“digitized” ) model Prog(.A)

trig! I }
s ] I
platform P Interna
clock
\
variables, clocks of
environment the model




Modeling the execution platform [Altisen & Tripakis, 2005]

1. Transforming A into Prog(.A).

@ trig! is an input event allowing A to perform one step;

@ the value of a clock is the difference between the current
value of the internal clock (now) and the date at which the
clock was last reset:

“x > 2" becomes ‘“now — x > 2"

‘x := 0" becomes “x := now”
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1. Transforming A into Prog(.A).
Example (Fischer's Mutual Exclusion Protocol)

trig? trig?

trig?, xj:=now, id:=0

rn
trig?
trig?
now—x1 <2 .
id=0
X1:=now
] X1:=now
id:=1
wi

trig?, id=1, now—x;>2

trig?
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1. Transforming A into Prog(.A).

2. Modeling the digital CPU.

Examples

x=A, x:=0
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1. Transforming A into Prog(.A).

2. Modeling the digital CPU.

Examples

x=A, x:=0 x€[A1,A2], x:=0

trig! trig!

®
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1. Transforming A into Prog(.A).
2. Modeling the digital CPU.

3. Modeling the global clock.

Examples

x=A, x:=0 xE[A—e,A+e], x:=0

now:=now+A now:=now+A

now:=0 now:=0




Modeling the execution platform [Altisen & Tripakis, 2005]

1. Transforming A into Prog(.A).
2. Modeling the digital CPU.
3. Modeling the global clock.

4. Modeling the input/output variables.

@ delays for reading variables...

@ lock mechanism for writing variables...



Modeling the execution platform [Altisen & Tripakis, 2005]

1. Transforming A into Prog(.A).
2. Modeling the digital CPU.
3. Modeling the global clock.

4. Modeling the input/output variables.

5. Classical verification techniques on the product of those
automata.
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Pros and cons of this approach

@ Pros:

o Very expressive: the platform can be described with many
details;

o Relies on classical techniques: the verification step is applied
on standard timed automata. Existing tools can be used.

e Cons:
e Formal meaning?: if the model satisfies some property, what
does it really mean?
o Faster is better?: we expect that a program proved to be
implementable on a given platform remains implementable on a
faster platform. This property fails to hold with this modeling. )
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A semantical approach [De Wulf et al., 2004]

1. “Implementation” Semantics

We consider a simple model of a platform, that repeatedly
executes the following actions:

@ store the value of the global clock;
@ compute guards;

@ fire one of the enabled transitions.

We assume that
@ one such loop takes at most Ap t.u. to execute;
@ the global clock is updated every A t.u.

~ We write [[A]}IEP‘)'AL for the set of executions of a timed

automaton A under this semantics.
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1. “Implementation” Semantics

2. Enlarged Semantics
We define the enlarged semantics for timed automata, by enlarging
guards on transitions by a small tolerance A:

If [g] = [a; b], then [g]A*SAP = [a — A, b+ A].

~~ We write [AJASAP for the set of executions of a timed
automaton A under this semantics.

Theorem ([DDRO04])
If A > 3A; + 4Ap, then [[A]]’A":’AL C [AJAASAP.
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We focus on safety properties for the implementation semantics:
we want to ensure that an implementation will avoid bad states.

~» Reacha(A) is the set of reachable states under the AASAP
semantics.

A1 < Ay = Reachp, (A) C Reacha,(A)

~ R(A) = (aso Reacha(A) is the set of reachable states under
the AASAP semantics for any A > 0.
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We focus on safety properties for the implementation semantics:
we want to ensure that an implementation will avoid bad states.

~» Reacha(A) is the set of reachable states under the AASAP
semantics.

A1 < Ay = Reachp, (A) C Reacha,(A)
~ R(A) = (aso Reacha(A) is the set of reachable states under
the AASAP semantics for any A > 0.
Lemma

For any timed automata A and for any set of zones B,

R(A)nB =@ iff 3A > 0. Reacha(A)NB = 2.
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Difference between [A] and R(.A)
Reach([.A]) R(A)

x<A

e[2—A,2+A
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An algorithm for computing R(.A)

Input: A Timed Automaton A
Output: The set R(A)

1. build the region graph G of A;
2. compute SCC(G) = the set of strongly connected
components of G;

- 4= 1(q)];

. J:=Reach(G, J);

5. while 3 S€5SCC(G). SZ J and SNJ # 2,
J:=JUS;
J :=Reach(G, J);

6. return(J);

S W
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Lemma

Let A be a TA with n clocks, A € Q°, and 6 = A/n. Let u be a
valuation s.t. there exists a trajectory [0, T] in [A] with

m(0) =7n(T) =u. Let v € [u] N B(u, ). Then there exists a
trajectory from u to v in [A]~.

Proof: We build the new trajectory by slightly modifying the delay
transitions in 7. This crucially depends on the fact that all clocks
are reset along the cycle. O
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Lemma

Let A be a TA with n clocks, A € Q°, and 6 = A/n. Let u be a
valuation s.t. there exists a trajectory [0, T] in [A] with

m(0) =7n(T) =u. Let v € [u] N B(u, ). Then there exists a
trajectory from u to v in [A]~.

Proof: We build the new trajectory by slightly modifying the delay
transitions in 7. This crucially depends on the fact that all clocks
are reset along the cycle. O

Corollary

Let A be a TA and p = pops1 - - - px be a cycle in the region graph
(i.e. px = po). Forany A >0 and any x,y € po, there exists a
trajectory from x to y.
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Lemma

Let A be a TA, 6 € R>? and k € N. There exists D € Q>0 s.t. for
all A < D, any k-step trajectory 7’ = (qq, t5)(q1, t1) - - - (G}, ti)

in [A]® can be approximated be a k-step trajectory

™ = (qo, to)(q1, t1) - - . (g, tk) in [A] with ||q; — q}|| < 0 for all i.

The proof involves parametric DBMs.
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Lemma

Let A be a TA, 6 € R>? and k € N. There exists D € Q>0 s.t. for
all A < D, any k-step trajectory 7’ = (qq, t5)(q1, t1) - - - (G}, ti)

in [A]® can be approximated be a k-step trajectory

™ = (qo, to)(q1, t1) - - . (g, tk) in [A] with ||q; — q}|| < 0 for all i.

The proof involves parametric DBMs.

Corollary

Let A be a TA with n clocks and W regions, oo < 1/(2n), and

A< —w*—. Letx € J and y s.t. there exists a trajectory from
22" (4n+2)

x toy in [A]®. Then d(J,y) < a.
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Can we relax the assumption on cycles?

Our algorithm does not work if we relax the “progress-cycle”
constraint. For instance:

y

x<A, x:=0

X, y<A,z>1-A
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Extension with clock drifts

when d time unit elapse, each clock is incremented by some value
between d x (1 —€) and d x (1 +¢). J

2
x<2
=1 x=0,y=2
y:=0
1 2

Since our algorithm is the same as [Pur98]'s, we get the following:

Theorem
Ra(A) = R:(A) = Ra(A). }
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o Cons:
o Not very expressive: the platform is very simple, thus not very
realistic. Also, we over-approximate the set of executions.
e New techniques, and much work still needed in order to be
applicable;

@ Pros:
e Formal approach: we know what we are doing...
e Reasonnable complexity: “only” PSPACE;
e Faster is better: the enlarged semantics obviously satisfies this
property.
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This approach has received much attention in the last 3 years:

@ extension to LTL properties [BMRO06]:

e Biichi automata techniques;

Repeated reachability.

@ Extension to timed properties:

o Different techniques;

o No restrictions on cycles.

adaptations towards symbolic (zone-based) algorithms
[DKO06,SFO07].
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@ Implementability is an important problem: the semantics of
timed automata is too mathematical;

@ Two different approaches:
e modeling the platform is a very expressive approach that

involves only classical techniques;
e enlarging the semantics is a coarser solution, but has nice

theoretical properties.



Conclusions & Future Work

@ Implementability is an important problem: the semantics of
timed automata is too mathematical;

@ Two different approaches:
e modeling the platform is a very expressive approach that

involves only classical techniques;
e enlarging the semantics is a coarser solution, but has nice

theoretical properties.

o Future work:
o Developpment and implementation of symbolic (zone-based)
algorithms;
o Direct synthesis of robust controllers.
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