Based on joint works with Karine Altisen, Patricia Bouyer, Martin De Wulf, Laurent Doyen, Jean-François Raskin, Pierre-Alain Reynier, and Stavros Tripakis

Nicolas Markey

Lab. Spécification et Vérification - ENS Cachan & CNRS

September 5, 2007

• The semantics of timed automata is a mathematical idealization:

 The semantics of timed automata is a mathematical idealization:

Infinitely punctual: Exact synchronization is required when composing several TAs;

 The semantics of timed automata is a mathematical idealization:

Infinitely punctual: Exact synchronization is required when composing several TAs;

Infinitely precise: Different clocks are assumed to increase at the same rate in both the controler and the system.

 The semantics of timed automata is a mathematical idealization:

```
Infinitely punctual: Exact synchronization is required when composing several TAs;
```

Infinitely precise: Different clocks are assumed to increase at the same rate in both the controler and the system.

Infinitely fast : It may happen, for instance, that a TA will have to perform actions at time n and n+1/n, for all n;

 The semantics of timed automata is a mathematical idealization:

Infinitely punctual: Exact synchronization is required when composing several TAs;

Infinitely precise: Different clocks are assumed to increase at the same rate in both the controler and the system.

Infinitely fast : It may happen, for instance, that a TA will have to perform actions at time n and n+1/n, for all n;

 In practice, a processor is digital and imprecise. Even if we prove that a TA will not enter a set of bad states, its implementations could still lead to bad behaviors.

Examples (Zeno behaviors)

- The red state can be avoided:
- But this would require to prevent time to elapse.

loc.	ℓ_0	ℓ_1	ℓ_2	ℓ_0	ℓ_{1}	ℓ_2	ℓ_{0}	ℓ_1	ℓ_2	ℓ_0
X	0	0	0	ϵ_1	0	ϵ_1	$\epsilon_1 + \epsilon_2$			
У	0	1	1	0	$1-\epsilon_1$	1	0			
Z	0	1	0	ϵ_1	1	0	$\epsilon_1 + \epsilon_2$ 0 ϵ_2			

Examples (Fischer's Mutual Exclusion Protocol)

- It can be proved that this protocol enforces mutual exclusion in the critical (red) state.
- Any imprecise implementation will fail to fulfil that property.

Outline of the talk

Introduction

2 Modeling the execution platform [Altisen & Tripakis, 2005]

3 A semantical approach [De Wulf et al., 2004]

4 Conclusions

Outline of the talk

1 Introduction

2 Modeling the execution platform [Altisen & Tripakis, 2005]

3 A semantical approach [De Wulf et al., 2004]

4 Conclusions

Env

Platform

x>2,y:=0 P y=0.6 id=1

- The automaton A is now a discrete automaton, using input variables given by the platform;
- The automaton \mathcal{P} is a timed automaton that triggers \mathcal{A} (modeling a digital CPU), and sends input variables to \mathcal{A} depending on the values of the variables in Env;

Fnv

- 1. Transforming A into Prog(A).
 - trig! is an input event allowing A to perform one step;
 - the value of a clock is the difference between the current value of the internal clock (now) and the date at which the clock was last reset:

```
"x > 2" becomes "now - x > 2"
"x := 0" becomes "x := now"
```


1. Transforming A into Prog(A).

- 1. Transforming A into Prog(A).
- 2. Modeling the digital CPU.

- 1. Transforming A into Prog(A).
- 2. Modeling the digital CPU.

- 1. Transforming A into Prog(A).
- 2. Modeling the digital CPU.
- 3. Modeling the global clock.

- 1. Transforming A into Prog(A).
- 2. Modeling the digital CPU.
- 3. Modeling the global clock.

- 1. Transforming A into Prog(A).
- 2. Modeling the digital CPU.
- 3. Modeling the global clock.
- 4. Modeling the input/output variables.
 - delays for reading variables...
 - lock mechanism for writing variables...

- 1. Transforming A into Prog(A).
- 2. Modeling the digital CPU.
- 3. Modeling the global clock.
- 4. Modeling the input/output variables.

5. Classical verification techniques on the product of those automata.

Pros and cons of this approach

- Pros:
 - Very expressive: the platform can be described with many details;
 - Relies on classical techniques: the verification step is applied on standard timed automata. Existing tools can be used.

Pros and cons of this approach

• Pros:

- Very expressive: the platform can be described with many details;
- Relies on classical techniques: the verification step is applied on standard timed automata. Existing tools can be used.

Cons:

- Formal meaning?: if the model satisfies some property, what does it *really* mean?
- Faster is better?: we expect that a program proved to be implementable on a given platform remains implementable on a faster platform. This property fails to hold with this modeling.

Outline of the talk

1 Introduction

2 Modeling the execution platform [Altisen & Tripakis, 2005]

3 A semantical approach [De Wulf et al., 2004]

4 Conclusions

1. "Implementation" Semantics

We consider a simple model of a platform, that repeatedly executes the following actions:

- store the value of the global clock;
- compute guards;
- fire one of the enabled transitions.

We assume that

- one such loop takes at most Δ_P t.u. to execute;
- the global clock is updated every Δ_L t.u.

 \rightsquigarrow We write $[\![\mathcal{A}]\!]_{\Delta_P,\Delta_L}^{\mathsf{Impl}}$ for the set of executions of a timed automaton \mathcal{A} under this semantics.

- 1. "Implementation" Semantics
- 2. Enlarged Semantics

We define the enlarged semantics for timed automata, by enlarging guards on transitions by a small tolerance Δ :

If
$$\llbracket g \rrbracket = [a; b]$$
, then $\llbracket g \rrbracket_{\Delta}^{\mathsf{AASAP}} = [a - \Delta, b + \Delta]$.

 \rightsquigarrow We write $[\![A]\!]_{\Delta}^{AASAP}$ for the set of executions of a timed automaton A under this semantics.

- 1. "Implementation" Semantics
- 2. Enlarged Semantics

We define the enlarged semantics for timed automata, by enlarging guards on transitions by a small tolerance Δ :

If
$$[g] = [a; b]$$
, then $[g]_{\Delta}^{AASAP} = [a - \Delta, b + \Delta]$.

 \rightsquigarrow We write $[\![A]\!]_{\Delta}^{AASAP}$ for the set of executions of a timed automaton A under this semantics.

Theorem ([DDR04])

If
$$\Delta > 3\Delta_L + 4\Delta_P$$
, then $[\![\mathcal{A}]\!]_{\Delta_P,\Delta_L}^{Impl} \subseteq [\![\mathcal{A}]\!]_{\Delta}^{AASAP}$.

We focus on safety properties for the implementation semantics: we want to ensure that an implementation will avoid bad states.

 \sim Reach_{Δ}(\mathcal{A}) is the set of reachable states under the AASAP semantics.

$$\Delta_1 \leq \Delta_2 \Rightarrow \mathsf{Reach}_{\Delta_1}(\mathcal{A}) \subseteq \mathsf{Reach}_{\Delta_2}(\mathcal{A})$$

 $R(A) = \bigcap_{\Delta>0} \operatorname{Reach}_{\Delta}(A)$ is the set of reachable states under the AASAP semantics for any $\Delta>0$.

We focus on safety properties for the implementation semantics: we want to ensure that an implementation will avoid bad states.

 \sim Reach_{\(\Delta\)} (\(\mathcal{A}\)) is the set of reachable states under the AASAP semantics.

$$\Delta_1 \leq \Delta_2 \Rightarrow \mathsf{Reach}_{\Delta_1}(\mathcal{A}) \subseteq \mathsf{Reach}_{\Delta_2}(\mathcal{A})$$

 $R(A) = \bigcap_{\Delta>0} \operatorname{Reach}_{\Delta}(A)$ is the set of reachable states under the AASAP semantics for any $\Delta>0$.

Lemma

For any timed automata A and for any set of zones B,

$$R(A) \cap B = \emptyset$$
 iff $\exists \Delta > 0$. Reach $_{\Delta}(A) \cap B = \emptyset$.

Difference between [A] and R(A)

Input: A Timed Automaton A

Output: The set R(A)


```
Input: A Timed Automaton A Output: The set R(A)
```

1. build the region graph G of A;


```
Input: A Timed Automaton \mathcal{A} Output: The set R(\mathcal{A})
```

- 1. build the region graph G of A;
- 2. compute SCC(G) = the set of strongly connected components of G;


```
Input: A Timed Automaton A
Output: The set R(A)
1. build the region graph G of A;
2. compute SCC(G) = the set of strongly connected components of G;
3. J:= [(q<sub>0</sub>)];
```

6. return(J);

6. return(J):

```
Input: A Timed Automaton A
Output: The set R(A)
1. build the region graph G of A;
2. compute SCC(G) = the set of strongly connected
   components of G;
3. J := [(q_0)];
4. J := \operatorname{Reach}(G, J);
```



```
Input: A Timed Automaton A
Output: The set R(A)
1. build the region graph G of A;
2. compute SCC(G) = the set of strongly connected
    components of G;
3. J := [(q_0)];
4. J := \operatorname{Reach}(G, J);
5. while \exists S \in SCC(G). S \not\subseteq J and S \cap J \neq \emptyset,
         J := J \cup S:
         J := \operatorname{Reach}(G, J);
6. return(J):
```


$$J\subseteq R_{\Delta}(\mathcal{A})$$

Let \mathcal{A} be a TA with n clocks, $\Delta \in \mathbb{Q}^{>0}$, and $\delta = \Delta/n$. Let u be a valuation s.t. there exists a trajectory $\pi[0,T]$ in $[\![\mathcal{A}]\!]$ with $\pi(0) = \pi(T) = u$. Let $v \in [u] \cap B(u,\delta)$. Then there exists a trajectory from u to v in $[\![\mathcal{A}]\!]^{\Delta}$.

Proof: We build the new trajectory by slightly modifying the delay transitions in π . This crucially depends on the fact that all clocks are reset along the cycle.

$$J\subseteq R_{\Delta}(\mathcal{A})$$

Let \mathcal{A} be a TA with n clocks, $\Delta \in \mathbb{Q}^{>0}$, and $\delta = \Delta/n$. Let u be a valuation s.t. there exists a trajectory $\pi[0,T]$ in $[\![\mathcal{A}]\!]$ with $\pi(0) = \pi(T) = u$. Let $v \in [u] \cap B(u,\delta)$. Then there exists a trajectory from u to v in $[\![\mathcal{A}]\!]^{\Delta}$.

Proof: We build the new trajectory by slightly modifying the delay transitions in π . This crucially depends on the fact that all clocks are reset along the cycle.

Corollary

Let \mathcal{A} be a TA and $p = p_0 p_1 \dots p_k$ be a cycle in the region graph (i.e. $p_k = p_0$). For any $\Delta > 0$ and any $x, y \in p_0$, there exists a trajectory from x to y.

$$J\supseteq R_{\Delta}(\mathcal{A})$$

Let \mathcal{A} be a TA, $\delta \in \mathbb{R}^{>0}$ and $k \in \mathbb{N}$. There exists $D \in \mathbb{Q}^{>0}$ s.t. for all $\Delta \leq D$, any k-step trajectory $\pi' = (q'_0, t'_0)(q'_1, t'_1) \dots (q'_k, t'_k)$ in $[\![\mathcal{A}]\!]^{\Delta}$ can be approximated be a k-step trajectory $\pi = (q_0, t_0)(q_1, t_1) \dots (q_k, t_k)$ in $[\![\mathcal{A}]\!]$ with $\|q_i - q'_i\| \leq \delta$ for all i.

The proof involves parametric DBMs.

$$J\supseteq R_{\Delta}(\mathcal{A})$$

Let \mathcal{A} be a TA, $\delta \in \mathbb{R}^{>0}$ and $k \in \mathbb{N}$. There exists $D \in \mathbb{Q}^{>0}$ s.t. for all $\Delta \leq D$, any k-step trajectory $\pi' = (q'_0, t'_0)(q'_1, t'_1) \dots (q'_k, t'_k)$ in $[\![\mathcal{A}]\!]^{\Delta}$ can be approximated be a k-step trajectory $\pi = (q_0, t_0)(q_1, t_1) \dots (q_k, t_k)$ in $[\![\mathcal{A}]\!]$ with $\|q_i - q'_i\| \leq \delta$ for all i.

The proof involves parametric DBMs.

Corollary

Let \mathcal{A} be a TA with n clocks and W regions, $\alpha < 1/(2n)$, and $\Delta < \frac{\alpha}{2^{2^W} \cdot (4n+2)}$. Let $x \in J$ and y s.t. there exists a trajectory from x to y in $[\![\mathcal{A}]\!]^\Delta$. Then $d(J,y) < \alpha$.

Our algorithm does not work if we relax the "progress-cycle" constraint. For instance:

 $x,y < \Delta,z > 1$

Our algorithm does not work if we relax the "progress-cycle" constraint. For instance:

 $x,y < \Delta,z > 1$

Can we relax the assumption on cycles?

Our algorithm does not work if we relax the "progress-cycle" constraint. For instance:

when d time unit elapse, each clock is incremented by some value between $d \times (1 - \epsilon)$ and $d \times (1 + \epsilon)$.

Since our algorithm is the same as [Pur98]'s, we get the following:

Theorem

$$R_{\Delta}(\mathcal{A}) = R_{\varepsilon}(\mathcal{A}) = R_{\Delta,\varepsilon}(\mathcal{A}).$$

Pros and cons of this approach

- Cons:
 - Not very expressive: the platform is very simple, thus not very realistic. Also, we over-approximate the set of executions.
 - New techniques, and much work still needed in order to be applicable;

Pros and cons of this approach

- Cons:
 - Not very expressive: the platform is very simple, thus not very realistic. Also, we over-approximate the set of executions.
 - New techniques, and much work still needed in order to be applicable;
- Pros:
 - Formal approach: we know what we are doing...
 - Reasonnable complexity: "only" PSPACE;
 - Faster is better: the enlarged semantics obviously satisfies this property.

Recent related work

This approach has received much attention in the last 3 years:

- extension to LTL properties [BMR06]:
- Büchi automata techniques;
- Repeated reachability.

Recent related work

This approach has received much attention in the last 3 years:

- extension to LTL properties [BMR06]:
- Büchi automata techniques;
- Repeated reachability.
- Extension to timed properties:
- Different techniques;
- No restrictions on cycles.

Recent related work

This approach has received much attention in the last 3 years:

- extension to LTL properties [BMR06]:
- Büchi automata techniques;
- Repeated reachability.
- Extension to timed properties:
- Different techniques;
- No restrictions on cycles.
- adaptations towards symbolic (zone-based) algorithms [DK06,SF07].

Outline of the talk

Introduction

Modeling the execution platform [Altisen & Tripakis, 2005]

3 A semantical approach [De Wulf et al., 2004]

4 Conclusions

Conclusions & Future Work

- Implementability is an important problem: the semantics of timed automata is too mathematical;
- Two different approaches:
 - modeling the platform is a very expressive approach that involves only classical techniques;
 - enlarging the semantics is a coarser solution, but has nice theoretical properties.

Conclusions & Future Work

- Implementability is an important problem: the semantics of timed automata is too mathematical;
- Two different approaches:
 - modeling the platform is a very expressive approach that involves only classical techniques;
 - enlarging the semantics is a coarser solution, but has nice theoretical properties.

• Future work:

- Development and implementation of symbolic (zone-based) algorithms;
- Direct synthesis of robust controllers.

